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SUMMARY

Farly investigators attributed many of the observed large scale
irregularities in upper atmospheric winds to turbulence. Later, gravity
wave theory was successful in explaining many of the properties of these
large scale irregularities. This led some researchers to question
whether turbulence existed at all as an ambient phenomenon of the upper
atmosphere. One explanation of the observed small scale structure on
chemical release clouds and meteor trails was that turbulence is produced
by the rocket, release mechanism or meteor during its passage through
the atmosphere. Comparison of the characteristics of turbulence observed
from both meteor trails and chemical releases indicates that the turbu-
lence must be a naturally occurring ambient phenomenon. This conclusion
is also supported by the discrepancies between observed and predicted
Jjet and wake turbulent velocities.

On chemical release clouds, many spherical protuberances or
globules usually appear below a certain altitude. It is shown that the
ambient turbulence provides an unstable medium in which small fluctua-
tions in the release of chemical or meteoric material lead to the forma-
tion of these globules:\ The upper atmospheric turbulence has a rather
sharp cutoff point, tﬂguturbopause, near 106 km, as determined by exami-
naticn of the maximum altitude of globule formation on many chemical
releases. Immediately below the turbopause the globules appear to be
almost spherical, tut they grow more fuzzy and ill-defined in appearance

as the altitude decreases. This behavior is explained by the existence



and properties of a subrange of motion affected by buoyancy forces and
acting only at small scales.

Turbulent winds determined by chemical release tracking are use-
ful in obtaining estimates of the turbulent energy source parameter es
and the buoyancy and viscous dissipation terms eg and €. In a stably
stratified portion of the atmosphere, such as above the mesopause at about
85 km, all contribution to the energy source term es mst arise from wind
shears. The buoyancy dissipation parameter eg is important only in such
a stably stratified region. Turbulent diffusion of globules at times
after release t 2 200 sec follows a d2 ~ € t3 law. The height variation
of € as determined from diffusive growth is in reasonable agreement with
the turbulent wind determinations of €. Both es and eg are found to be
slowly varying with altitude, having values of about O.4 and 0.35 watts /kg
respectively, in the height region from 90 km to the turbopause. However,
€ Increases rapidly with altitude. This observed rapid increase and the
energy balance requirement e < e, indicate that turbulence cannot exist
above 106 km, in agreement with observation. The observed height vari-
ation of € is compatible with estimates of € obtained at lower altitudes
by other investigators.

During the time after release period t < 150 sec, the globules
snow a d2 ~ €g t5 diffusion, indicating the presence of a buoyancy sub-
range affecting only the smaller scales. During the time after release
interval 150 <+t <200 sec, the buoyancy

2
ule growth, and molecular diffusion, d~ ~ t, alone accounts for the glob-

0

ubrange no longer affects glob-

ule expansion during this period. The 150 second interval of buoyancy

subrange diffusion is an appreciable fraction of the period 2n/wg for

ix



harmonic oscillation of a fluid element displaced from its equilibrium
altitude in a stably stratified atmosphere. The 50 second period of mo-
lecular diffusion corresponds closely to the theoretically predicted time
scale va_/wg of the largest buoyancy subrange eddies. The maximum buoy-
ancy subrange size scale Lb varies with altitude but is approximately 0.8
km between the altitudes of 98 km and the turbopause. This value is pre-
dicted by the requirement that the characteristic buoyancy kinetic energy
1

per unit mass 3 vi must be less than the observed turbulent kinetic

energy per unit mass.

—-

, Suggested modifications are made for the form of the shear and
N

energy spectrums of the turbulence.{ The experimental evidence supports
the validity of these alterationéﬂzﬁd also allows evaluation of some of
the constants which appear in the spectral law formulas. Both the spec-
trum functions and correlation techniques are used to determine the max-
imum scale Lo of the turbulent winds and the vertical scale of the total
winds. The vertical scale of the total winds is found to vary approxi-
mately as the pressure scale height over a wide altitude region. The
maximum vertical scale of the turbulent winds also varies with altitude,
having a value of about 7 km at an altitude of 100 km. The maximbhm hor-
izontal scale of the turbulent winds at 100 km is found to be about 10
km. Thus the strong vertical wind shears present introduce only a slight
anisotropy into the turbulence.

The turbulent mixing length is found to be about 0.75 km below the
turbopause and to be rapidly increasing above this altitude. Thus the
mixing length and maximum buoyancy scale are approximately equal in the

region immediately below the turbopause} The viscous cutoff size and
-



time scales L* and T*, calculated theoretically, are not inconsistent with
observation. However, these small scales cannot be observed with the res-
clution attainable with present data gathering techniques. Theoretical
relations among the eddy scales LO, L* and the dissipation length Ld’ pre-
viously derived for isotropic non-buoyancy turbulence, must be modified
because of the important buoyancy effects present.

‘HThe characteristic time scale T of the largest turbulent eddies is

PR

found to be 300 to 330 seéx Thus chemical cloud lifetimes of about 10
minutes allow ample time for observation of most, if not all of the tur-
bulent spectrum. The observed value of TO is approximately equal to the
period 2n/ws, where ws is the observed magnitude of the total wind shear.
. The usual Richardson, Townsend and Layzer criteria for the onset

of turbﬁience are examined and found to be unsuccessful in explaining the
observed turbulence cutoff near 106 km. However, a generalized Richardson
criterion is derived which does successfully predict turbulence only below
106 kﬁt? This generalized Richardson criterion is based on the energy

e o

requirement that the characteristic buoyancy kinetic energy per unit mass
% Vi must be less than the turbulent kinetic energy per unit mass which
can be produced by wind shears.

The Reynolds criterion is also examined. It is found that this
criterigﬁ will allow turbulence up to at most only a few kilometers above
he observed 106 km turbopaus§;~ However, theoretical uncertainties as
to the proper application of the Reynolds criterion in a free atmosphere

may mean that the only restriction this criterion places on the turbu-

lence is an absolute upper limiting altitude of 120 to 140 km.

xi



CHAPTER I
ENERGY BATLANCE

Introduction

In order to be characterized as turbulence, the motion field must
satisfy certain requirements. It must be three dimensional, nonlinear,
diffusive, rotational and dissipative, mechanical energy being transformed
to internal energy through a cascade of eddies of diminishing size. The
cascade, ending in viscous dissipation of energy from the smallest eddies,
1s connected with the nonlinearity, three dimensionality and rotationality
of the field. The velocity components must be distributed irregularly
and aperiodically in time and space.

The diffusive nature of turbulence is responsible for the transport
of properties such as mass, momentum and heat. The transfer rate of the
properties is, in general, greatly increased by the action of the turbu-
lence. Time and length scales of the property-transporting motions are
usually large compared to intermolecular dimensions and are often as large
as the scales of the distribution of the transported properties. For this
reason, turbulence 1is a continuum phenomenon.

The fact that turbulence is rotational, in the hydrodynamic sense
of the word, does not mean that the motion of the eddies is actually one
of rotation. In fact, such two dimensional rotating motions as vortex
sheets and whirlpools are not to be considered turbulence, according to

the above definition. An eddy is, instead, merely a portion of the fluid

which moves more or less coherently with respect to the mean motion.




Alternatively, as a more mathematical description, an eddy may be consid-
ered as a component of the Fourier integral expansion of the velocity
function. The expansion is usually made with respect to the wave number
k. The associated eddy size § for wave number k is just £ = k_l.

Photographic tracking of chemical release clouds [Justus et al.,
196ka, 196L4b] provides information on the wind profile V(z) over a wide
altitude range. The total winds are made up of prevailing, periodic tidal
wave, gravity wave and turbulent components. Mean winds obtained from
chemical release tracking provide averages over the cloud lifetime, which
is typically five to 10 minutes. Frequently many protuberances in the
form of nearly spherical globules appear on these clouds below about 106
km altitude. Individual tracking of these globules, or other identifiable
cloud features, yields time varying winds. The intermediate time scale
winds, v, are obtained by subtracting the average wind profile velocities
from these time varying winds. Because of the relatively short lifetime
of these clouds, large time scale gravity wave and/or turbulent components
would be considered as part of the mean winds. However, results indicate
that the "intermediate" scales of turbulence observable by chemical re-
lease tracking constitute most, if not all of the larger scales in the
turbulent spectrum.

Several investigators have observed that above some altitude near
105 km molecular diffusion accounts for all of the chemical cloud expan-
sion while below this altitude accelerated diffusion caused by turbulence
takes place. Usually the globular structure of chemical releases exists
only up to an altitude close to this transition point, the turbopause,

where conditions change from turbulent to laminar. However, Cote [1965]



has pointed out that accelerated diffusion can be observed on sodium
trails which have no globular structure.

There are three possible mechanisms for the production of the
globular structure in chemical releases: (1) A reaction of the release
vehicle or ejection mechanism creates the turbulence and the globular
structure directly. (2) The turbulence is naturally occurring ambient
turbulence and provides an unstable medium in which small fluctuations
in the releasing of the chemical lead to globular structure of the
cloud. (3) The turbulence is ambient in nature and provides the velocity
fluctuations which produce the globules directly.

Comparison of the intensity and duration of the observed turbu-
lence on chemical releases and meteor trails (see Appendix A) rules out
the first of these. Cote's observations rule out the third and support
the second mechanism. The cases in which globules are not produced in
the turbulent zone are ones in which the cloud chemical was released at
a very uniform rate or in a small concentration. The altitude at which
globules cease to appear on a chemical release cloud is thus in most
cases a good estimate of the turbopause altitude. Observations of the
globule cutoff altitude on 21 chemical releases yielded an average value
of 106 km th4 rms.

The globules appear to have an especially sharp edge on cesium
clouds observed under twilight conditions by their infrared resonance
radiation. However, glcobular structurc has been observed on several
types of chemical clouds both at twilight and during the night. Chemi-
cal clouds with globular structure have an appearance similar to the

globular structure of cumulus clouds or the mammilated under surface of




cumulonimbus or stratocumulus clouds in the lower atmosphere.

Although the chemical release globules depend on turbulent eddies
for their existence, the globules themselves are not to be identified as
eddies, since the globules are acted on by the eddies and expand by tur-
bulent diffusion.

Even on clouds where the globules appear sharpest, they become
generally smaller with decreasing altitude and in the vicinity of 90 km
cease to have their customary near spherical shape. Below this altitude

the clouds appear generally fuzzy but have no spherical globular structure.

Definitions of the Energy Balance Terms

Since turbulence is dissipative, statistically steady turbulent
motion requires the existence of a continuous external energy source.
ITf the air is thermally unstable, the potential energy of the unstable
arrangement can supply the energy for turbulence. In a stably strati-
fied region of the atmosphere, such as above the mesopause at about 85
km, wind shears provide the only source of energy for maintaining turbu-
lence. Stable stratification also makes 1t possible for energy to be
dissipated from the air motions by the effects of buoyancy forces.

For statistically stable turbulence in a stably stratified medium,’
the energy balance equation for the turbulent kinetic energy per unit

mass may be written
€ =€ + ¢ (1)

where € is the rate per unit mass at which kinetic energy is being sup-
plied to the turbulence by wind shears, and €g and € are the rates per

unit mass at which kinetic energy is being dissipated by buoyancy and



viscous forces, respectively.

Townsend [1957] gives the relations

}J dV
€ = 1 )
s V.V, ——
.. 1y ox

1,4
and

g.

- L = _ _E_
€g - EJ T evl T Vg ?

where g 1s the acceleration of gravity, T is the mean temperature and o
is the fluctuation in temperature. The temperature fluctuation is the
difference between the temperature of a fluid element and the mean tem-
perature at the altitude of the element. If a fluld element, initially
in temperature equilibrium at a height z, is displaced adiabatically to
the altitude z + { , and assumes the ambient pressure, the temperature

fluctuation is given by
- - _ (2L £
6 =T(z+ C) - T(z) = aZ+C>g,

where C_ is the specific heat at constant pressure. For an ideal gas
g/Cp is equivalent to < X—§—£j> (Mg/R), where v is the ratio of spe-
cific heats, M is the molecular weight and R is the universal gas con-
stant. For the altitudes of interest here either expression may be
used without appreciably altering the calculations. The parameter wg,

defined by

(2)

(4)



has units of inverse time and is the frequency of harmonic oscillation
[(Nawrocki and Papa, 1963) which a fluid element would experience after a
small displacement from its equilibrium altitude.

When a fluid element leaves the level z and carries momentum to
the level z + { , a fluctuation in velocity of magnitude v is produced.

This horizontal turbulent velocity would be given by

BVX
VX = VX(Z + g) - VX(Z) ~ ( g—z— . (6)

Therefore the use of (5) and (6) in equation (3) produces an approximate

relation for eg given by

Lamb [1945] gives a relation for € in a viscous compressible fluid,

which can be put in the form

VAN ov AV \2 — ov, \2
_ i 2z, . _vyy _ 21 _1
¢ =21 Z(ax) + Z(ay * Bz> 3 Zaxi ) (8)
i cyc

1

where T is the kinematic viscosity and EJ indicates a sum over the full
cyce

cyclic range of components. For an inc%mpressible fluid the last term

in (8) would be identically zero. If the turbulence is also isotropic,

it can be shown [Taylor, 1935] that (8) reduces to

avx 2 avx 2 éjl avx
e = 67 S§;> + <§§;> + 3% 85_ 5 (9)



which can be further reduced to

AV N2
157 X
€ = & <§§‘> - (10)

Turbulent Diffusion

Cote [1962, 1965] has summarized several theories of turbulent

diffusion. Several relations he discusses can be put in the form
2 6-2n n-2 .n

~ vy € t s (11)
where 4 is the diameter of the diffusing cloud at time t after its
injection and v, is the rms turbulent velocity. The exponent n in (11)
can take on the values 2,3,4 or 6 depending on the form assumed for the
turbulent energy spectrum or on other assumptions about the nature of

the turbulence. Note that n = 3 in (11) eliminates the dependence on v, -

3

There are at least three theories which predict t~ dependence in (11).
One due to Batchelor [1950] is based on Kolmogoroff's similarity prin-

ciple and predicts the specific form

@ - 16 £, (12)
3
Lin's theory [l960] of turbulent diffusion predicts
d2 = %Bts s (13)

where B is a parameter which Lin proposes tc be proportional to € through

some universal function of the Reynolds number. Tchen's theory [1961] of

diffusion in turbulent shear flow predicts d2 ~ t2 for high shear fields



and i2 ~ t3 for low shear fields. Tchen's predictions for diffusion in
shear turbulence are based on his earlier derivationg [Tchen, 1954] for

the energy spectrum E(k), to be discussed in Chapter II. The predicted

ov,

form for E(k) depends on the magnitude of the shear V' = §§£ , and the
J

expected diffusion law depends on the form of E(k). For large V', the

rredicted forms are E(k) ~ vkt and @° ~ t°. For small V', the spec-

tral and diffusion law forms become E(k) -~ k_5/3 and d° ~ t3.

The diffusion theories of Batthelor, Lin and Tchen do not take into
account the effects of buoyancy. Bolgiano [1959] has suggested that the
necessity for including €g in the energy balance equation for a stably
stratified portion of the atmosphere leads to alterations in the energy
spectrum E(k). The expression for eg, given by equation (3), contains
the covariance 5;; of the temperature fluctuation and the vertical tur-
“ulent velocity. A positive value for this covariance indicates that
turtulent kinetic energy is being converted to potential energy by the
buoyancy effects associated with the turbulence working against gravity.
Bolgiano suggests that if the Reynolds number (see Chapter I) is suffi-
ciently large there will be a subrange of wave numbers k over which this
covariance remains positive. This energy extraction in the buoyancy sub-
range means that the viscous dissipation € may be significantly less than
the rate of generation of turbulent kinetic energy € The difference in
these terms is eg, the work done against buoyancy.

Bolgiano suggests that the importance of this energy extraction by
the buoyancy effects means that eg and wg are the important parameters
which determine E(k) in the buoyancy subrange. He predicts the form E(k) -

k_ll/j in this subrange. This alteration in E(k) in the buoyancy subrange




should lead to an associated alteration of the diffusion law. Assuming
that the parameters eg and wg also determine the diffusion law in the

>

buoyancy subrange, Bolgiano derived a t” law for this subrange which is

given by

d2 = sz € t5

Y (11)

where the dimensionless constant B is of order unity.

Therefore if observations of actual turbulent diffusion yield a
time exponent compatible with (11), € can be calculated. However, if a
t5 diffusion is observed, this would indicate the existence of a buoy-

ancy subrange with the diffusion law being independent of € .

Experimental Evaluation of the Energy Balance Terms

The turbulent winds v, determined as outlined in the introduction,

may be used in (2) and (7) to determine ¢ and € . The strong vertical
5 g

ov oV
shear components 525 and SEX Tor a given set of wind data are easily

determined from the wind profile. The horizontal shear components are
taken to be about 0.05 m/sec/km as indicated by velocity differences
obtained from chemical trails separated by several tens of kilometers
[cf. Rosenberg and Justus, 1965]. Values of wg may be calculated from
1962 U. S. Standard Atmosphere data. By approximating derivatives with
ratios of finite differences, one may also use the turbulent winds in
(8), (9) and (10) to calculate €, again using 1962 U. S. Standard Almos-
phere data to calculate T . The formula used for this purpose is

1.458 x 107° 73/2

1 - (n° /sec) (15)
p (T + 110.4)




10

where T and p are the atmospheric temperature and density in OK and kg/m3.
Relation (15) yields an unknown amount of uncertainty in T, but it must
be used since tabulated values are not given above 90 km.

Turbulent wind data from several chemical releases have been ana-
lyzed and, although there is a fairly large scatter in the data points,
an exponential function represents the height variation of € very well for
each of the three cases (8), (9) and (10). Roper [1963] has reported a
rather large seasonal variation in € as determined from meteor trail in-
vestigation. Undoubtedly there is some seasonal variation as well as
diurnal and even small scale spatial variation in € . This could be re-
sponsible for much of the scatter in the calculated € values obtained from
the chemical release data. However, there is not a sufficient amount of
these data for analysis of the variations to have any statistical signif-
icance. An exponential function fit to all of the observed data would
thus represent an appropriate average over the different seasons, times
of day and spatial locations from which the data were obtained. Figure 1
shows the exponential functions obtained by a least squares fit of the ¢
data calculated from equations (8), (9) and (10). Each curve shows € to
be increasing more rapidly than the kinematic viscosity N, which is also
shown in Figure 1 for reference.

Globule sizes versus time have been measured for several chemical
releases launched at both morning and evening twilight. Globules that
can be observed early in their lifetimes show an unusual growth behavior.
Figure 2 shows an example of the globule growth curves obtained. The
case 1llustrated is a cesium globule at 97.7 km. The general behavior of

globules exhibiting the anomalous early growth is a very rapid expansion




11

oL

*9PNYIFTY SNSJISA U £3TS00SNA OTIRWSUTY

943 pue 3 Jd39ureJed UOTIRAISSTJ SNOOSTA T oJnII14g
b3/s313em “53ed uorjedLssip ABusud SNOJSLA
L L0 1070 Lt00°0
I | _ /
J/ — o6
\\
\\m\\ e
e
e
Y
f e >+ g6
\\ - 7 P -
Q CLNUAOY *D——pmr e -7
pd -7
s -
, \\\\ —] 001
7T
P /
uoLsnigyLp afnqoly 3
/
— SOt
7 elnuoy <3,
_ oL el E| \\\ — o1t
6 PLNUWMO] D \\\nA|||||.>p_mOUm?> JL1]ReWAULY
\\
g sit

| / _ l

0001 0oL 0L
.umm\ws €£11S0ISLA DL3RWRULY

wy “3ybLaH



12

during the first 150 t LO seconds after release, followed by a period of
almost no growth which lasts for 50 + 10 seconds. After the period of
slow growth, called the level phase, the globule expansion rate increases
but the growth does not proceed as rapidly as during times before the
level phase. Although apparent anomalies in globule growth could be pro-
duced by changing sky background or changing camera f/stops, the observed
level phase is apparently a real effect. This is borne out by the con-
sistent height variation of the diameter at which the globule growth levels
off, as illustrated in Figure 3. This graph shows that the diameter at-
tained at the time of the level phase is nearly constant between 98 and
106 km but undergoes a fairly rapid variation below and above these
altitudes.

For comparison with turbulent diffusion formulas, the growth curves
are best plotted in the log-log form shown in Figure L, which shows the
same growth curve illustrated in Figure 2. Figure 4 shows an initial ex-
t? T2

pansion according to d2 ~ - As determined from all globules observed,

+
the average initial growth follows a d2 ~ t5 -1 expansion, indicating that

the initial growth is due to the effect of a buoyancy subrange. The aver-

>

age observed constant of proportionality for d2 ~ t7 diffusion is 0.6 x
lO_h'mg/seCB. However, measurement inaccuracies at small globule diameters
mean that this value is probably accurate only to within about a factor of
three. For the 90 to 105 km range, equation (7) yields approximately

0.35 watts/kg for ¢, and wz is about 6 x 107 sec™ in this height inter-
val. Therelore the observed globule growth in the early phase is

2 2 5 o
d = 0.3 W € t 16
3w e, v, (16)
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with a probable error of a factor of three in the numerical constant.

5

Tr.is 1s better than mere qualitative agreement with the t

5

equation (1) for a buoyancy subrange. The t° growth occurs only at

diffusion

small globule sizes because energy balance considerations limit the buoy-
ancy subrange to small globule scales. This limitation of the buoyancy
subrange to small scales will be discussed more fully in Chapter III
which deals with scale sizes.

Figure 3 shows that the maximum size scale affected by the buoy-
ancy subrange is decreasing with decreasing altitude. This accounts for
the spherical shape of the globules in the 90 to 106 km region and the
more fuzzy appearance of the clouds below 90 km. The motions in the buoy-
ancy subrange are somewhat more ordered than those in the larger scale
range. In the 90 to 106 km region the buoyancy subrange can affect the
cloud structure during a comparatively long period of its initial growth
and can shape the cloud into regular spherical globules. At lower alti-
tudes the buoyancy subrange camnot act on the cloud elements for a suffi-
cient length of time to form spherical globules and the motions of scales
larger than the buoyancy subrange break up the cloud into a fuzzy ap-
Pearance.

Wken the ts growth becomes inoperative the small growth during the
level thase can be accounted for by molecular diffusion alone. For the
globule growth shown in Figure 4 the value of d2 at the cessation of the
t5 2 m?.

expansion is 2.2 x 10 At the end of the level phase the value of

d2 is 2.9 x lO5 m2. Since for this glcbule the level phase lasts about

55 seconds, the observed growth during this period would be accounted for
2
by a molecular diffusion ccefficient of D = %%f ~2 X lO2 mg/sec, a

16



17

reasonable value for cesium at 98 km.

Since molecular diffusion is important during the level phase
growth, *he sharpness of cesium globules compared to those on other chem-
ical clouds may be due to the fact that cesium, the heaviest cloud mate-
rial used, has the smallest molecular diffusion coefficient. However,
cesium mﬁst be observed at twilight by its resonance radiation, and the
sharpness of the globules may be merely a function of the optical density
of the released cloud material.

After the end of the level phase, globules again undergo an accel-
erated power law diffusion. For the globule growth shown in Figure 4 the

.6 T 0.
expansion follows d2 ~ t2 6 0.3

. Since the exponent is close to three,
the power law for globule growth in this phase was determined by least
squares analysis using the formula

2 16 n-2
- €

a< = -

3 L (17)
which allows determination of n and € . The numerical factor in (17) is
taken from (12), since none of the other turbulent diffusion formulas pre-
dicts a specific value for this constant. This "constant" may even vary
with altitude if (13) is applicable, since the Reynolds number varies with
altitude. The average value of the exponent n obtained from many globule
observations is 3.0 t 0.4 rms. Figure 1 shows the best least squares
exponential curve which fits the height variation of € determined from

the glotule diffusion. Although this methed of determining
ent of the calculated values of T , this graph also shows a rapid increase

of € with altitude.
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From measurements of diffusive growth of turbulent trails Cote
[1965] observes a d2 ~ 42 expansion, in disagreement with the globule
diffusion d2 ~ t3 reported here. However, Cote points out that diffi-
culties in accounting for changing sky background make it impossible for
his obtservations to completely rule out d2 ~ t3 diffusion. Cote's
observations are dependent on sky background because they rely on densi-
tometric determination from the cloud image on film of the shape of the
profile of cloud light emission above that of background. The same sky
background difficulties would admittedly plague the globule measurements
reported Lere, but, since d2 ~ t3 globule diffusion has been observed
against both increasing and decreasing sky background, the effects of sky
background change seem to be minor. Globule expansion can rarely be meas-
ured beyond diameters of about three km. Therefore an alternate method,
independent of sky background, for measuring large scale diffusion effects
would be most Lelpful in determining if Cote's d2 ~ t2 result indicates
a transition to a different diffusion law at large scales (as might be
expected from Tchen's theory) or is merely an effect of sky background.
One possitle method for studying large scale turbulent diffusion would be
by observing the growth with time of the separation distance between pairs
of glotules at approximately the same altitude. These measurements would
be independent of sky background.

Although the agreement between the several estimates of ¢ shown in
Figure 1 seems to be embarassingly poor, Figure 5 shows that it is actually
much better than the agreement between estimates of € obtained by various

investigators at lower altitudes. This figure shows a summary by Lettau

[1961] of values of e obtained from diffusion and wind profile observations
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in the altitude range from one cm to 40 km. The uncertainty in € is as
much as three orders of magnitude at some of these lower altitudes. This®
fact plus the uncertainties in T and the numerical constant in (17) makes
the agreement in the graphs of Figure 1 seem good indeed. Figure 5 also
shows the variation of the average € determined from the chemical release
data. The observed height variation between 90 and 110 km fits well with
the lower altitude data, under the assumption that € continues to decrease
with decreasing altitude, diminishing by approximately an additional three
orders of magnitude from 90 to 30 km.

The average € obtained from the four curves in Figure 1 is plotted
in Figure 6. This figure also shows the exponential curves fit by least
squares to the data points for es and eg obtained from formilas (2) and
(7). Due to scatter in the es and eg data points, these curves are prob-
ably accurate only to within about a factor of two. To within this limit
of accuracy es = €g + € holds for the curves shown over the height range
from 92 to 106 km. The € curve intersects the ¢ curve at 106 km and
because € continues to increase rapidly, the energy balance requirement
€ < €, means that turbulence cannot be maintained above this altitude.
This 10€ km intersection agrees well with the average observed cutoff
altitude for globule formation. The observed region below 98 km where
€g > eS is also physically impossible if turbulence is to exist there, but
this discrepancy can easily be accounted for within the possible errors in

the es and eg curves.
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CHAPTER II

SHEAR AND ENERGY SPECTRUMS

Previous Energy Spectrum Theories

According to the theory of homogeneous turbulence developed by
Kolmogoroff [1941 a, 1941 b] the turbulent field may be characterized by
three scale ranges. For eddy scale € the three scale ranges, in terms of
k = g'l, are: (1) the large scale fluctuations 0 <k = k_, which carry
the turbulent energy extracted from the mean flow at a rate per unit mass
€., (2) the isotropic inertial subrange which has random statistical prop-
erties and transfers energy from larger to smaller scales with negligible
energy loss and (3) the viscous dissipation region k* < k < » where the
kinetic energy of the smaller eddies is dissipated by viscous forces at
a rate per unit mass €. Since no buoyancy forces are present in this
theory, the energy balance equation is Just es = € . TFigure 7(a) shows
schematically the energy spectrum E(k), the energy per unit mass for wave
numbers between k and k + dk. In the inertial subregion E is a function
of € and k according to the Kolmogoroff theory.

Bolgiano [1959] has proposed a theory which accounts for buoyancy
effects and divides the energy spectrum into four subranges as shown in
Figure 7(b). The large scale range 0 S k < ko and the viscous dissipation
range k* S k < ® remain as before. The region tetween ko and k* is divided
into a buoyancy subrange k_ Sk < ky in which E = E(eg,k) and the usual
inertial subrange only in the range kB Sk < k* in which E = E(e , k).

The energy balancy equation is es = eg + € , where eg is the rate per unit



23

mass at which kinetic energy is removed from the turbulence by the buoyancy
action.

The results of Chapter I, however, indicate that the buoyancy sub-
range affects only the small scale (hence large k) sizes, and that turbu-
lence is observed at larger scales (smaller k) than those affected by buoy-
ancy. Hence the actual energy spectrum must be something like the one
showr. schematically in Figure 7(c), with the inertial subrange in the re-
gion k_ <k < k, and the buoyancy subrange in the region k <k < K. Ex-
perimental determination of the smallest buoyancy scale kB shows it to be
approximately equal to k*. It is an energy balance requirement which de-
mands the upper scale cutoff of the buoyancy subrange, as will be discussed
in the following chapter. Data are presented in this chapter which support
the assumption that E = E(es, k) in the inertial subrange and E = E(eg, k)
in the buoyancy subrange with E(eg, k) being the form predicted by Bolgiano
and E(es, k) coming from existing non-buoyancy theories but obtained by

mmMﬁummnofesfM'eh1ﬂmfwmtmmsﬂe,k)mﬁdlﬂwypmdkt.

Definitions of the Spectrum Functions

The spectrum theories discussed in the previous section are actu-
ally applicable only for non-shear turbulence or for turbulence in which

wind shears do not impose a significant anisotropy on the motion field.

oV oV
As mentioned in Chapter I, there are strong vertical shears g;é and SEX s

but the horizontal shears are small in magnitude. Thus the turbulence
in the upper atmosphere could be anisotropic in the vertical direction.
Evidence presented later in this chapter indicates, however, that these
shears do not introduce a drastic anisotropy. Therefore it seems reasona-

ble that the concepts of division of the energy spectrum into the subranges
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shown in Figure 7(c) is reasonable, but that the actual form of the energy
spectrum E(k) should come from shear turbulence theory. Tchen [1954, 1961]
has formulated such a theory.

Two important spectrums describing turbulent shear flow are the
energy spectrum E(k), previously defined, and the shear spectrum F(k),
which has a similar definition with respect to the shear across eddies of
wave number between k and k + dk. Both E(k) and F(k) have dimensions of
{length) 3/(time)2 .

If one uses Tchen's theory and substitutes €s for € , the spectrums
E(k) and F(k) for low shear fields in the inertial subrange of shear tur-

bulence are given by
E(k) = o ei/3 k'5/3 (18)

and

k) - p 3T (19)
where O is a dimensionless constant of order unity and B is a parameter
which depends on the mean flow and has units of frequency (or shear).
Equation (18) is the same form predicted by Kolmogoroff's theory,
except for the fact that e = €, in that theory but e # es for shear tur-
bulence with buoyancy effects. Relation (18) is also justified by the
fact that Tchen's theory for low shear fields predicts the d2 ~ t3 diffu-
sion observed from globule expansion.
For upper atmospheric turbulence it is difficult to measure the
spectrums E(k) and F(k) directly. However, the methods developed by

Blamont and de Jager [1961] and extended by Zimmerman [1962] allow infor-
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mation about the spectrums to be obtained from the spectrum functions E(k)

and F(k), defined by

E(k)

J E(k) dk (20)
K

and
[s=]

j P(k) dk . (21)

k

F(k)

These are essentially the spectrums E and F averaged over all eddy scales
up to € = k-l. Neglecting the effects of the change in E(k) for k > k.

one may substitute (18) and (19) into (20) and (21), obtaining

Ek) = o ei/?’ kjw k"5/3 dk = goz ei/S k'2/3 (22)
and
F(k) = B 62/3 kfo k'7/3 dk = %B ei‘/3 /3 (23)
In terms of the eddy scale § , these relations would be
E(E) =§ae§3fﬁ (21)
and
R(g) - 2p /3 g3 (25)

Experimentally, the functions E and F may be evaluated by averages
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over the velocity field. The observed spectrum functions Eg and fg are

F ()

o)

2
<b(2) - vz + )7 > (26)

and

E(5) = 3P - Pz >, (27)

where the averages are taken over some range of altitude z.
Another spectrum function of importance is the motion spectrum
function, which comes from homogeneous non-shear turbulence theory and is

defined similarly to (26) by the relation

£(8) = <lv(x) - vz +8)1> (28)

where the average is taken over the vector position r, § is a vector dis-
Placement from r, and & is the magnitude of the vector 8. Batchelor [1947]

has shown that this function is given by

62

£(8) = vy 62/3 62/3 1+ =\~ Y e§/3 62/3

(29)
36° ’

where v is a dimensionless constant of order unity and 61 is the component
of 6 in the direction of the turbulent wind component v. Again es has been
substituted for € in the original formulas, but for homogeneous non-shear
turbulence with no buoyancy, to which the original theory applies, eS = € .
Experimental evidence presented in the following sections justifies the

use of ¢_ in (29) and the other spectrum functions.
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Experimental Evaluation of the Spectrum Functions

Photographic tracking of chemical trails provides information on
the wind profile over an extensive altitude range. The total wind profile
contains prevailing, periodic tidal wave and gravity wave winds, called
collectively the mean winds, plus the small and possibly large scale tur-
bulent components. An attempt to eliminate the mean winds can be made by
subtracting an arbitrary function of altitude, resulting in a profile of
residual winds.

Total wind profile data were available from approximately 30 chem-
ical releases covering sufficient altitude to employ this procedure. Data
from each of these were divided into two altitude regions, 90 < z < 110 km
and 110 € z < 140 km. A least squares fit parabola in each altitude range
was subtracted from the north-south and east-west wind components to obtain
the residual winds. The shear and energy spectrum functions for both total
winds and residual winds were then obtained from (26) and (27). Data were
also available from two releases in the 70 to 90 km altitude region, but
these have not been included since the results were not statistically
significant.

Figures 8 and 9 show typical shear and energy spectrum functions
of the residual winds in the lower altitude range, plotted on log-log
scale for easy determination of the exponent of € . The quantity graphed
in Figure 9 is Jjust the velocity difference part of equation (27), omitting
the factor %\ Both graphs show exponents in the small € region which are
in reasonable agreement with the ones expected from equations (24) and
(25).

The observed functions E_ and Fo of (26) and (27) are not, however,



&, m2/sec2

o

Shear spectrum function F

10,000

5,000

2,000

—_

-

o
S
S}

1

500

200

100

50

= 1.4
“”,<g;=—Fo(f)nvé

Shear spectrum function
of residual winds

(N-S component)
Release 12-3-62 22:45 CST
90.5 - 109.5 km

Maximum
at 6 km

20 L. -
10 1 | J | 1
0.1 0.2 0.5 2 5
Vertical displacement &, km
Figure 8. Sample Shear Spectrum Function of the North-South

Component of the Residual Winds.

10

31



1000
500
o
O
7]
"
~
o~
E
S 200
[
(o)
o~
=
2
2100
o=
S
G
£
=]
<
-+
O
2 50
wv
>
2
7]
<4
L
=
o
20
10

2 x Energy spectrum function
of residual winds

(E-W component)
Release 10-25-62 05:21 CST
97.5 - 108.0 km

] ] I | |

0.1

Figure 9.

0.2 0.5 1 2 5

Vertical displacement £, km

Sample Energy Spectrum Function (Times 2) for
East-West Component of the Residual Winds.

the

10

32



33

identical with the theoretical relations (24) and (25). Since the method
of obtaining the residual winds leaves some contribution from the mean

wind profile, Eé and Fo are related to E and F by
E (k) = o E(k) (30)
and

F_(k)

1

9 F(X) (1)

where 21 and P, are dimensionless factors required to compensate for the
contributions from the mean winds, and which increase as this contribution
becomes larger.

Tables 1 and 2 show the results of averaging all of the exponents
of the shear and energy spectrum functions of both total and residual winds
in the two altitude regions. Averages were taken of data from all releases
as well as separate averages for morning twilight and night releases.

The observed average globule cutoff altitude was 106 km for the
releases studied. Thus the 90 to 110 km region embraces the turbulent
zone while the 110 to 140 km range lies above the turbulent zone.

Tebles 1 and 2 show that above the turbulent zone the average expo-
nents of both shear and energy spectrum functions are higher than those
expected from equations (24) and (25). In the turbulent region the expo-
nents of both shear and energy spectrum functions are in better agreement
with (24%) and (25), but the values are still slightly high. The exponents
obtained from the residual winds come closer to the expected values than
do those of the total winds. For the total winds, the nighttime exponents

of both Eo and fo tend to be higher than the morning twilight values.



34

Table 1. Average Shear Spectrum Function Exponents

. Total Winds Residual Winds

Height

Range All Twilight Night All Twilight Night

(km) Releages Releases Releases Releases Releases Releases
~ 90-110 1.k9 1.25 1.51 1.h47 1.50 1.43
~110-1L0 1.74 1.75 1.7h 1.55 1.59 1.51

Table 2. Average Energy Spectrum Function Exponents

Height Total Winds v Residual Winds

Range All Twilight Night All Twilight Night

(km) Releases Releases Releases Releases Releases Releases
A~ 90-110 0.77 0.70 0.79 0.70 0.73 0.66

~110-140 0.84 0.83 0.85 0.78 0.82 0.75
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For the residual winds, the twilight exponents are lower than the values
for nighttime, the twilight turbulent zone exponent being approximately
equal to the nighttime value above the turbulent zone.

For chemical releases with many identifiable features, separate
photographic tracking of these features provides several wind velocities
in each kilometer section of altitude. The motion spectrum function £(§)
can be obtained by averaging velocity differences according to (28) with
6 representing displacements which remain within a one kilometer altitude
range of the position r, of equation (28). By thus confining the averages
to essentially a horizontal plane, the effects of the vertical shear can
be eliminated and the non-shear turbulent motion spectrum results. This
procedure has been applied to 13 chemical releases in the approximate
height range 90 to 110 km. The resultant average motion spectrum function
for each wind component is plotted on log-log scale in Figure 10. A super-
imposed line of slope 2/3 is seen to fit the data well for horizontal dis-
placements of seven km or less. Thus equation (29) accurately describes

the horizontal non-shear turbulent motion spectrum function.

The Buoyancy Subrange

According to the buoyancy theory of Bolgiano [1959], buoyancy forces
act to oppose vertical motions and remove kinetic energy from the turbu-
lence over the wave number range ko Sk < kB. The predicted energy spec-
trum in this region is

E(k) = © eZ/S wg/S k'll/5 , (32)

where 8 is a dimensionless constant and wg was defined in Chapter I. The
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-1
eddy scale LB = kB above which the buoyancy effects become important in

the Bolgiano theory is given by the relation

LB = 3 3/2 . (33)

If values of € and eg are taken from Figure 6, and the value 2.4 x 1078

sec = is used for wg, the calculated values for LB at heights of 95, 100
and 105 km are about 1, 10 and 100 m, respectively. Since the scale of
the smallest eddies L* = k*-l is about 20 to 40 m in this height range,
there is little or no portion of the spectrum which could form an inertial
subrange in the region kB <k X< k*. Therefore, the assumption that the
buoyancy subrange occupies the entire wave number range kb Lk < k* is
Justified.

Roper [1963] has proposed a buoyancy subrange which, unlike the
one predicted by Bolgiano, affects only the small scale eddies with wave
numbers in the range k, <k < k" as indicated in Figure 7(c). The largest
buoyancy scale Lb = k%l is determined by requiring that in the altitude
range over which buoyancy effects are important (possibly only the 90 to
110 km region), the buoyancy kinetic energy per unit mass %J;S uz must be
less than or approximately equal to the turbulent kinetic energy per unit
mass %ve. Roper's data, obtained from meteor trail wind analysis, indicate
that Lb ~ 0.7 km. Figure 3 shows that this value is in good agreement with
the observed largest buoyancy scale in the height region 98 to 106 km, as
determined from globule growth studies. Since the t5 buoyancy subrange

diffusion discussed in Chapter I agrees with Bolgiano's theory, it appears

that this theory adequately describes the buoyancy effects if the energy
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balance large scale cutoff is included. Therefore the Bolgiano energy
spectrum (32) presumably applies to the observed buoyancy subrange.

Since the energy spectrum is modified for small scales by the ex-
istence of the buoyancy subrange, the observed energy spectrum function
E;(g) should also be modified for € s 0.7 km. However, this effect was
undoubtedly masked by the method used for obtaining Eo(g) for € <1 km.
These values were determined from interpolation between wind profile data
points which were spaced not less than one km apart. Roper [1963] reports
that spectrum analysis of turbulent winds obtained from meteor tracking
does show anomalies in the scale range § S 0.7 km. The buoyancy effects
may also be a contributing factor to the slightly high exponents observed
for EO and FO, since substitution of (32) into (20) would yield E(E) ~ 56/ >

for € in the buoyancy subrange, a higher exponent power law than (2L4).

Evaluation of Constants in the Spectrum Functions

The values of the constants @ and v in the energy spectrum E(k)
and the motion spectrum function £(8) may be evaluated by a refined pro-
cedure similar to one developed by Roper [1963]. The turbulence power €

is given by

e = 27 fwke E(k) dk . (34)
0

Since the integral is dominated by the inertial and buoyancy subrange

contributions, this is approximately

*

k
€ =2N0a e2/3 jkb kl/3dk + 2ﬂ9e2/5 w4/5 f k'l/5 dk. (35)
S " g g K,
(o]
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At kb the inertial subrange energy spectrum (18) must equal the buoyancy

subrange energy spectrum (32). This implies that

8/15
S
6 = W (36)

and that the buoyancy subrange energy spectrum (32) may be written as

E(k) = o 2/3 k§/15 15 (37)

S

The use of this result in (35), and the performance of the integration
produces an equation which has @ as the only unknown. Neglecting terms

*
not containing k causes only five per cent error or less. The resultant

equatiocn, solved for & , is

2 eu/5 L8/15
- 2 (38)
Y Y

o

where the well known relation k* = (e/ﬂ3)% has been used. If values of
Lb’ ¢ and e are obtained from Figures 3 and 6, and 1962 U. S. Standard
Atmosphere data are used to evaluate T, equation (38) yields values of 0.6
and 1.6 for O at altitudes of 100 and 105 km, respectively.

Equation (38) can be used in (36) to produce the simpler relation

for 6 given by

2 2/5
& = %<—L§—> P (39)
M e wg

which yields values of 0.08, 0.3 and 0.8 at altitudes of 95, 100 and
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105 km, respectively.

The constant y in equation (29) for the motion spectrum function
can be evaluated from Figure 10 by taking 100 km as the representative
altitude, hence es = 0.37 m2/sec3. The resultant value for vy is 1.5.

The turbulent motion spectrum function f(8) may be interpreted as
the horizontal equivalent of the vertical energy spectrum function Eo(g).
Thus comparison of equations (24) and (29) shows that y = % ® . Since’

Y = 1.5, this implies & = 1.0, in good agreement with the average value
of & determined from equation (38).

The maximum in f(8) in Figure 10 indicates a horizontal scale of
10 km for the turbulent winds. Previously [Greenhow and Neufeld, 1959a,
1959b, 1960] the horizontal scale of the turbulent winds has been estimated
as 200 km. However, Hines [1960] later attributed this horizontal scale
to the gravity wave component of the total winds. The reason why this max-
imum in £(§) implies a 10 km scale for the turbulent winds is discussed in
the following section.

Equating the observed maximum in £(8) (~ 330 m?/sece) with %Ui, the
kinetic energy per unit mass of the largest eddies, implies that UO = 26
m/sec. The vertical scale at 100 km is approximately seven km, indicating
only slight anisotropy of the inertial subrange due to shear influence. If
the largest eddy scale Lo is taken as seven km instead of 10, evaluation
of £(8) at & = 7 km implies UO = 23 m/sec. Presumably the most appropriate
values for LO and UO are somevhere between the limits seven to 10 km and
23 to 26 m/sec.

If the value @ = 1.0 is used in equation (24), the parameter ¢, of

equation (30) can be evaluated from the observed energy spectrum function
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values Eg at some displacement, say one km. The relation for @l is then

2 Eo(l km)

3(1000)2/3 e§/3

9 (10)

U, can also be estimated by taking L_ = 7 km and requiring EO(LO) = ¢l(%

o
as implied by equation (59) of Chapter III. UO is thus given by
2 E (7 km) \%
U =<————> . (41)
o ?y

Table 3 shows the resultant values for wl and UO at several alti-
tudes. The Py values are seen to decrease with increasing altitude. This
would be expected since the polynomial fitting procedure used to obtain
residual winds should be better for more nearly "monochromatic" upper alti-
tude winds. The values of UO in Table 3, although agreeing fairly well
with the previous estimates, are consistently low. The Uo values in Table
3 could be reconciled with the estimate Uo = 25 m/sec by either of the not
unreasonable choices & = 1.5 or es increased by a factor of 1.8. Either
of these alterations would decrease Py to about two-thirds the values shown

in Table 3.

The Spectrum Functicns Related to Scale Size

Tehen [1954] has shown theoretically that for high shear fields both
E(k) and F(k) are proportional to k—l. Thus for high shear fields the re-
lations for E(E) and F(§) would become

E(§) ~ 1n(1/E) (k2)

and
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Table 3. Values of v, and U, Determined from Eo(g)

Height 2 Eo(l km) 2 EO('r km) P, U,
(xm) (fsec”)  (x [sec”) (m/sec)
90 749 1920 6.0 18
95 730 2100 5.2 20
100 698 1540 L.5 19
105 649 1420 3.8 19

110 558 1180 3.0 20
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F(E) ~ 1n(1/8) (43)

instead of the low shear relations (24) and (25).

The observed shear spectrum function ﬁo(g) typically has a maximum
similar to the maximum at € = 6 km seen in Figure 8. In the 90 to 110 knm
region the average £ at maximum is seven km. Zimmerman [1962] has sug-
gested that this maximum may represent the transition point from low shear
isotropic turbulence to high shear field anisotropic shear turbulence, the
shear spectrum function changing from the form in equation (25) to that
given in (43). If this is the case, the &® ~ +3 observed on globules at
small scales should, according to Tchen's diffusion theory [1961], undergo
a transition to d2 ~ t2 at this scale size, in agreement with Cote's [1965]
observations. However, Blamont and de Jager [1961] proposed that the max-
imum in Fé corresponds to the vertical correlation distance of the motion
field.

It is instructive to consider a hypothetical velocity profile v({) =
C sin({), where C is a constant amplitude and { is an appropriate nondi-

mensional altitude. For this case, the shear spectrum function would be

2 217
F(50) = &= jo [sin(C) - sin(C + 6¢)1° ac
- F [1- cos(82)] . (4k)

If this relation is plotted on log-log scale, the resultant curve is qual-
itatively similar to the curve for fo in Figure 8. A maximum occurs at
8C = m (that is, at one half the wave length), but the Fg of (44) is pro-

portional to (6@)2'0 in the small 8( region.
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The actual wind profiles (either total or residual) contain compo-
nents of more than one wave length, but it seems reasonable to assume that
the shear spectrum function maximum should still be associated with the
scale of the predominant wave length (or wave lengths) of the components.
This conclusion is supported by the fact that a similar maximum at 8 =
10 km occurs in the horizontal motion spectrum function f(§) in Figure 10.
This indicates a horizontal scale for the turbulence of about 10 km al-
though there is no high shear field which can be associated with the hori-
zontal displacements. The shear and motion spectrum scales will be dis-
cussed more thoroughly in the next chapter. The fact that the Eo(é) curves
do not generally have a well defined maximum like that of the Fo(g) curves,
and hence show no transition from relation (24) to (42), also supports the
conclusion that the Fg(g) and f(§) maximumms are to be associated with a

length scale of the motion.
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CHAPTER IIT

CHARACTERISTIC SCALES OF THE MOTION

Definitions of the Length Scales

The characteristic time and length scales of the turbulent eddies
are important parameters of the turbulent velocity field. The chemical
release method provides two means of determining these scales: (1) direct
observation of the globules or structure of the chemical clouds in the tur-
bulence and (2) determination of the scales by analysis of the wind veloc-
ities and fluctuations.

Two important characteristic length scales are Lo, the scale of the
largest, energy bearing eddies (wave number ko) and L*, the scale of the
smallest, energy dissipating eddies (wave number k*).

Vertical Autocorrelation Scale

The vertical autocorrelation coefficient G(6z) for the total wind

profile V(z) is defined as

G(sz) = <v(z) V(z + 82)>

I (45)
K2 P>< vz + 62) P> 2

where averages are taken over a range of altitudes z. Relation (45) is
appropriate for wind profiles V(z) for which the average over altitude V
is zero. If V is not zero than V(z) - V must be substituted for V(z)
throughout this formula. To see how G. is related to a length scale of

the motion, consider a hypothetical wind profile given by V({) = C sin((),
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|
%
where C is a constant amplitude and { is an akpropriate nondimensional
\

altitude. For this "monochromatic" profile G(4Z) would be

i
)

cej sin(¢) sin(C + 6C) aC

a(8Q) = 5 = cos(8C) . (46)

c2f sin?(¢) dC
0

Thus G = 1 at 8 = O and G = 0 at 8L = m/2, that is at one quarter wave
length. An actual wind profile is made up from components of many wave
lengths but a general cosine-like dependence is still observed for G(6z).
The value of 6z at which G(6z) first attains the value zero is called the
vertical autocorrelation scale, Lv'

Shear and Motion Spectrum Scales

The observed shear spectrum function f&(g) and the motion spectrum
function f(§) were defined in Chapter II, where £ is a vertical displace-
ment and § is a horizontal displacement. The shear and motion spectrum
scales, LS and Ls’ are defined as the values of § and 6 at which Fé(g) and
f(8) attain a maximum value. It was shown in Chapter II that for a "mono-
chromatic" velocity profile this maximum would occur at € or § equal to
one half the wave length. Thus, for a "monochromatic" velocity profile,
the vertical shear spectrum scale should be twice the vertical autocorre-
lation scale.

Mixing Length Scale

An analogy between random molecular and turbulent motions introduces
the concept of mixing length. According to the mixing length idea of tur-

bulent motion, eddies in fully developed turbulence transport momentum from



b7

one level of the flow to another. The transport of momentum from the level
z to the level z + Lm produces a velocity fluctuation v in the mean veloc-

ity V according to the relation

v = V(z+Lm) -V(z)sz-g% : (%7)

where Lm is the mixing length. Thus the magnitude of the mixing length

is given approximately by

Lm - av \ (48)

where v is the magnitude of the observed turbulent velocity.

Viscous Cutoff Scales

Standard theories of homogeneous turbulence provide a method of
evaluating the length and time scales of the smallest eddies, those which
dissipate their kinetic energy by viscous action. The length scale of

these eddies is given by

1l

e (TP
and the time scale by

o= (%>% ) (50)

where T| is the kinematic viscosity of the atmosphere and ¢ is the rate

Per unit mass at which energy is dissipated by viscous forces.
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Spatial Correlation Scales

The one dimensional correlation coefficient of the turbulent winds
is defined by
<v(x) v(x + >

() = - - (51)
K@<z + 9T

where the averages are taken over positions x, and § is a spatial displace-
ment. There are actually two pertinent one dimensional correlation coef-

ficients gl(i) and g_(&), the longitudinal and transverse correlations,

2
where § is respectively parallel and perpendicular to the component v which
is being correlated. The scale of the largest, energy bearing eddies is

given by the integral scale of these correlation coefficients. The de-

fining equations are

L = 2 (8) ag (52)
o] jg €1
and

1, - ] e(as (53)

From standard homogeneous turbulence theory [see Nawrocki and Papa, 1963]

it can be shown that, to second order, g1 and g_ are given by

2

2

1]

(54)

|

g(s) = 1--
1 oL

QN

and



49

no

g,(8) = - S, (55)

L

[o TRV

where Ld is the dissipation length parameter defined by

2

IO Yy

*
Ld is a scale larger than I. and smaller than Lo' It corresponds

(56)

to eddies which contain a negligible portion of the teotal energy and are
responsible for a negligible part of the total dissipation of energy.
ov
. X . . . _ 2
Solving for (ay > from equation 10 of Chapter I, and using Ui = 3<<VX:>
allows equation (56) to be written as

51 U
L = —— . (57)

no

Frequently the symbol UO is used for the rms velocity \kivx > . In this
notation equation (57) would have a numerical factor of 15 instead of 5.
Here, however, UO refers to the total turbulent velocity and not merely

S

Hence, the approximate relation U02 = 3<:VX2>- may be used to obtain (57)

I

. . 2 2
the x component. For isotropic turbulence <vx > = <vy >

in the present notation.

Since the total turbulent kinetic energy per unit mass Pg is pro-
dp
portional to Ui, and since the rate Fra at which this kinetic energy is

convertéd to internal energy by viscous forces is proportional to € , then
equation (57) requires the fractional rate of energy dissipation L dpg

E dt
to satisfy the relation
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d
B T (58)
pg dt Li

Relation (58) justifies the name dissipation length parameter for Ly-

Relationships Among the Eddy Scales

*

The three eddy scales L , Ld and LO are not entirely independent
of one another, and relationships among these scales can be derived. By
integrating the energy spectrum E(k) one can obtain the kinetic energy

per unit mass of the energy bearing eddies, that is

<]

e - j‘o B(k) ax ~ B(L) . (59)

Use of the form for E(k) given by (18) and (32) and evaluation of the
*
integral in (59) shows that to a good approximation the terms in k and

kb can be neglected. This leads to the approximate result
LR . 3q 2/3 273
W2 - okl (%)

Substituting LO for k;l and solving for es yields the relation

Y
_ -3/2 o
e, = (3a)77F ¢ (61)
o
One of the formulas of standard turbulence theory is
%
€S = A 'L—O 3 (62)

where A is a dimensionless constant of order unity. If the value 0 =1
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is used as an average of those obtained in Chapter II, relation (61) im-
plies that A ~ 0.2.
If the relation for Li given by (57) is combined with (61), this

produces the equation relating Ld and Lo’ given by

5 (3 )3/ <%> <%> ‘ (63)

If €, obtained from equation (57), is also substituted into (49), this pro-

thCE1O

*
duces the relationship between I, and L

a given by
L2 : (64)
La S5 U

Equations (63) and (6L4) may be combined to produce a relationship among

all three length scales, as given by

L3
*2 € d
2. () . (65)
®s (15 a)3/2 L
This corresponds to the relation
3
L
p? . — & (66)
10 «/ 15 LO

derived by Townsend [1956] for isotropic homogeneous turbulence with no

buoyancy subrange.
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The Buoyancy Subrange Scale

Roper [1963] has predicted a buoyancy subrange which becomes most
important when the buoyancy kinetic energy per unit mass is of the same
magnitude as the turbulent kinetic energy per unit mass. The buoyancy

kinetic energy per unit mass is, as derived in Appendix B,

n
\V]

-
<
Il
-
|

(67)

o
o O
om
.

where Lb is the characteristic largest scale of the buoyancy subrange,
and wg, as defined in Chapter I, is the frequency at which a fluid element
would oscillate when displaced from its equilibrium altitude. Since % vi

must be less than, or at most approximately equal to the observed turbu-

2
lent kinetic energy per unit mass 3 v, it follows that

2 v
w J
b g

!
A

(68)

where v 1s the average observed turbulent velocity. The eddies of size
less than Lb are affected by the Roper buoyancy subrange. Over the height
range from 100 to 110 km wg is approximately 2.5 x lO_2 sec_l. Thus, use
of the observed value v = 15 m/sec in relation (69) yields a value of
about 0.8 km for Lb' This value 1s in good agreement with the observed

Lb values in Figure 3 for the altitude region from 98 km to the turbopause

at 106 km.

Time Scales
The time correlation coefficient of the turbulent wind component

v is defined as



_ <) vt + 68)D
{{OFP> (s + 66) P>

g(8t)

and the time scale T of the turbulent winds is the first value 6t = T at
which g(7) = 0. If an eddy of size scale Le has a characteristic velocity

Vs then its time scale Te is given approximately by

53

’ (69)

L = v 1 . (70)

Experimental Observations

The total winds are composed of prevailing, 24 hour and shorter
period tidal components, gravity wave and turbulent components. Greenhow
and Neufeld [l959a, 1959b, 1960] report large scale anisotropic turbulence
with vertical scalela;6 km, horizontal scale ~ 200 km and time scale ~ 100
min. There is some doubt (see Appendix A) as to whether the motions of
this scale contain true turbulent components. Gravity wave theory [Hines,
1960] apparently accounts for these observed scales satisfactorily. The
conclusion of Chapter II that near 100 km the vertical and horizontal
scales of the turbulence are about 7 and 10 km supports the gravity wave
explanation for the 200 km horizéntal scale observed by Greenhow and
Neufeld.

The vertical scale of the total winds and large scale non-tidal
components may be calculated by using the total and residual winds in the
vertical autocorrelation formula (45). The wind data were divided into
overlapping altitude segments of 20 km and the vertical scale was calcu-
lated at five km intervals. Figure 11 shows the average results obtained

from 18 chemical release profiles. The solid curve shows the vertical
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autocorrelation scale of the total winds in the altitude range from 80 to
160 km. Total wind scales above 140 km were estimated by extrapolation
of the vertical autocorrelation curves to their zero point and may be
somewhat in error. Two values of vertical scales obtained by Webb [1964]
at lower altitudes indicate continuity of the vertical scale of the total
winds between lower and upper altitudes with an exponential increase in
the lower region. From 80 to 140 km the vertical autocorrelation scale

of the total winds is seen to follow closely the variation of the pressure
scale height, as suggested by Zimmerman [196L]. The calculated vertical
autocorrelation scale of the residual winds is also shown in Figure 11.

Figure 12 shows the calculated shear spectrum scale for both total
and residual winds for altitudes up to 150 km. The shear spectrum scale
of the total winds is also seen to follow the variation of the scale height
in the region 80 to 125 km. Table 4 shows the observed ratio between the
shear spectrum scale and the vertical autocorrelation scale. Below 100 km
this ratio is close to unity. Above 100 km this ratio is approximately
two, as expected for a "monochromatic" wind profile.

The facts that the winds below the turbopause are distinctly mul-
tiple wave length forms and that the observed spectrum functions EO(E) and
F&(g) agree with turbulence theory predictions mean that in this height
region the vertical scale of the residual winds is virtually identical to
the vertical scale of the turbulence.

The turbulent winds may be obtained by individual tracking of glob-
ules or other identifiable features on the chemical release clouds. Using
these turbulent velocities and vertical shears obtained from total wind

profiles, one may use equation (48) to calculate the mixing length.
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Table 4. Ratio of Shear Spectrum Scale to Vertical
Autocorrelation Scale for Total and Residual Winds

Height Total Winds Residual Winds

(km)

80 1.00 -
85 1.07 1.23
90 0.98 1.35
95 1.02 1.27
100 1.68 2.15
105 1.36 1.77
110 1.k 1.96
115 1.49 2.02
120 - 1.8k
125 - 1.77
130 - 1.64%
135 - 1.56
140 - 1.60
1545 - 1.71
150 - 1.86

155 - 1.75
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Figure 13 shows the calculated mixing length in the height region from 92
to 111 km. It is seen from Figure 13 that the mixing length oscillates
about a constant value of approximately O.75 km up to the turbopause region
and then increases rapidly above that altitude. Thus the mixing length and
the largest buoyancy subrange scale Lb are about equal in the height region
immediately below the turbopause.

The viscous cutoff scales can be estimated from equations (49) and
(50) by using data for € obtained from Figure 6. Table 5 lists some values
for L* and T* calculated in this manner and v*, the characteristic velocity
of the smallest eddies, as determined by equation (70). Size and time
scales, as well as velocity fluctuations of this magnitude are not observ-
able with present techniques of chemical release observation. The smallest
globules observed on the chemical releases studied for this report were
about 200 m in diameter. Smaller globules could not be resolved with the
short (7 inch) focal length cameras used. However, Blamont and de Jager
[1961] have reported observations of globules as small as 90 m in diameter
using higher resoclution photography.

Use of the time varying winds over the lifetime of the chemical re-
lease to obtain turbulent velocities limits the observations to the middle
portion of the turbulent spectrum. The smallest scale wind motions are
excluded because of the finite time intervals (usually 15 or 30 seconds)
between successive cloud position determinations. Any very large scale
turbulent velocity fluctuations which may exist would be excluded because
of the short usable lifetime of the chemical clouds (usually not more than
about 10 min). However, it appears that most, if not all, of the larger

scale turbulent fluctuations can be observed in this time period. For a
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largest turbulence scale LO = ' to 10 km with characteristic velocity 23
to 26 m/sec, as indicated in Chapter II, the time scale of the largest
eddies would be 300 to 400 sec. In this case cloud observations over 10
minutes or longer would allow ample time for measurements of the largest
eddies.

Figures 14 and 15 show two presentations of the observed turbulent
velocity spectrum. Figure 14 shows the fraction of the observed turbulent
velocities with magnitudes between one m/sec limits versus velocity from
0 to 50 m/sec. Figure 15 shows the fraction of observed turbulent veloc-
ities greater than a given velocity v, versus v from O to 50 m/sec. The
appearance of the graph in Figure 14 below the maximum at a velocity of
about eight m/sec is affected by the loss of small scale resolution and
by velocity errors in the technique used for measuring the turbulent winds.

The turbulent velocities can be used in (51) to calculate the spa-
tial correlation function. An approximation to the longitudinal correla-
tion coefficient gl can be made by considering north-south velocity cor-
relations between points separated by less than two km in both east-west
and vertical directions, and similarly for east-west wind components using
points separated by less than two km in both north-south and vertical di-
rections. Figure 16 shows the average results for gl(ns) and gl(ew) versus
the horizontal separation distance r. The correlation curves of Figure 16
do not have the standard form for a longitudinal correlation coefficient
in isotropic turbulence. There is a similarity, however, with the form
given by Townsend [1956] for isotropic turbulence consisting of eddies of
only two distinct sizes. The rapid decorrelation in the region r < 2 km

shown in Figure 16 may be & result of the buoyancy subrange influence at
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small scales or, more probably, the result of limited accuracy in deter-
mining the turbulent velocities. The rms observed turbulent velocity is
about 15 m/sec and the average error in turbulent wind determinations is
about five m/sec. Because of these uncertain anomalies, the correlation
curves of Figure 16 cannot be used to obtain reliable estimates of the
integral scale LO or the dissipation length parameter Ld' However, the
fact that the zero points on the curves of Figure 16 are at about six km
deces verify that Lo must be of this order of magnitude for horizontal
displacements.

Since wind shears tend to stretch the chemical clouds into more or
less horizontal configurations, it is easier to find points for correlation
with horizontal rather than vertical separations. However, the vertical
spatial correlation has been calculated in a similar fashion to the hori-
zantal correlation by considering vertical velocity component correlation
only between points separated by less than two km in both horizontal di-
rections. Because of the few correlation points obtainable, the vertical
spatial correlation curve has a more ragged appearance than the graphs of
Figure 16 and hence is not shown here. However, it has quite similar fea-
tures of rapid decorrelation at the small displacements and a zero point
at less than six km.

By using UO =25 m/sec and data from Chapter I for T and € , one
can employ equation (57) to obtain the values of L, shown in Table 5. If
a =1 and €, = 0.37 m2/sec3 are chosen as appropriate values, equation
(61) yields the value 8.2 km for L, in good agreement with the estimates
made in Chapter II. Relating UO and LO by equation (70) implies that the

time scale TO of the largest eddies is about 330 sec. Direct time corre-
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lation of the turbulent velocities by relation (69) shows a correlation
scale of about 300 sec, in good agreement with this value for TO

As discussed in Chapter I, the time required for globules to diffuse
to their leveling off diameter, which corresponds to L, is 150 * Lo sec.
The globules remain in the level phase for about 50 sec, that is, until
200 * 4O sec after the release of the chemical cloud. The period of har-
monic oscillation for a fluid element displaced from its equilibrium alti-
tude is 2ﬂ/wg, which ranges in value from 250 to 285 sec in the altitude
from 85 to 110 km. Thus the globules remain under the influence of the
buoyancy subrange for an appreciable fraction of an oscillation period.

Layzer [1961] has argued that if a fluid element retains its iden-
tity for a length of time equal to a major part of a complete oscillation
period, then the motion is not true turbulence. The harmonic oscillations
caused by the buoyancy subrange are certainly too ordered to be considered
random turbulent motions. However, Layzer's argument is based on the
Bolgiano buoyancy theory which allows the buoyancy subrange to affect
large scales of the motion and possibly to produce motions which are larger
in magnitude than the random turbulent fluctuations. Since the observed
buoyancy subrange is 